|
浪潮大数据赋予城市交通“智慧之眼”随着中国成为“车轮上的国度”,拥堵、违章、事故、停车难等交通问题既是众多“有车一族”的心头之痛,也成为各城市管理者迫切需要解决的一项重大民生问题。实际上,交通问题的背后是海量数据的科学处理问题,“智慧交通”的实现或许才是真正的“治本”之策。 HBase赋予交通更智慧的“眼睛” 目前,最主流的大数据技术非Hadoop莫属,是当下大数据平台中应用率最高的技术。作为Hadoop平台上的子项目之一,HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用它可在低价服务器上搭建起大规模结构化存储集群,在实现在线实时海量数据处理方面体现出了巨大优势。在交通业务中使用HBase技术来提升卡口系统的性能和服务质量,成为了当前大数据时代,化解城市交通难题的明智之选。 面对驳杂的数据类型、庞大而增长迅速的数据量、以及管理者对于快速响应的需求,浪潮大数据技术是如何在技术层面面面俱到满足需求的?下面将针对公安交管的具体业务需求来予以说明: ● 数据存储 卡口系统是公安交管业务的重点,卡口过车数据一般包括卡口编号、车道编号、号牌号码、号牌颜色、号牌类型、过车时间、过车速度等属性信息。由于HBase数据表的特性,在卡口过车数据表的设计时,可以以车牌号与过车时间为主键,这样在进行卡口过车记录查询时,可以同时以号牌号码和过车时间为查询条件。 ● 布控车辆报警 当车辆通过卡口时,摄像头拍摄过车图片并快速识别出车牌号等车辆信息,利用HBase技术对该车牌号进行高速比对分析,检查该车是否在布控车辆范围内,当识别的车牌号符合布控车辆的特征时,系统会发出实时告警,报警信息中包括车牌号码、车速、车型、车辆通过时间、车辆图片等,方便办案警员快速做出响应。 ● 套牌车分析 系统设定一个阀值,指定每两个卡口之间的距离内行驶速度。当在两个卡口内监测到同一车牌号,但是在这监测的时间段内无法从一个卡口行驶到另一个卡口时,可以断定其中一辆车属于套牌车,系统会对这两辆车做出报警,并提示警员快速做出处理。 ● 车辆轨迹分析 选择某一重点车辆,查询该时间段内经过的所有卡口,并在警用地理信息系统上显示该车辆的历史行驶轨迹。 ● 伴随车辆识别 能够自动分析出某一辆车在选择的时间范围内,在其所经过的各个卡口时的前后一段时间间隔(如:前后30秒)内均同时出现过的车辆信息。 浪潮智慧交通大数据解决方案拓扑图 HBase只是冰山一角 浪潮大数据能做的更多 浪潮大数据技术在智慧交通方面的成功应用,仅仅是大数据处理技术中的冰山一角,大数据不仅包括Hadoop分布式并行计算技术,还包括MPP(海量并行处理)技术、HBase技术Stream(流处理)技术等等。无论是从数据存储层面,还是从查询请求层面,分布式存储不仅解决了客户的海量数据存储问题,还利用分布式查询请求解决了客户的实时或准实时查询需求。 因此,未来的大数据应用将采用分布式存储计算与廉价服务器集群相结合的形式,使用Hadoop作为海量数据的存储,使用MPP技术作为数据处理、集散的底层支撑,并辅以Stream技术来实现Real-Time应用展现。 可以预见,大数据技术的快速发展能让我们在不远的未来看到智慧交通的实现,日益恶化的城市交通状况也能得到有效改善。 责编:李玉琴 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
热门博文 |
|