|
大数据的核心是大量数据的分析能力大数据是一个朝阳产业,而且将推动数据中心基础设施及相关软件的爆发式增长,企业部署的数据中心环境也需做出相应的变革与创新。虽然,有很多“大数据”应 用环境需要较高的IOPS性能。为了迎接这些挑战,服务器、存储系统、服务、大数据技术软件以及整个产业都已经蓄势待发,未来也必将蓬勃发展。 大数据核心分析能力需要强大的后台支撑 所谓大数据,最为核心的就要看对于大量数据的核心分析能力。但是,大数据核心分析能力的影响不仅存在于数据管理策略、数据可视化与分析能力等方面,从根本上也对数据中心IT基础设施架构甚至机房设计原则等提出了更高的要求。为了达到快速高效的处理大量数据的能力,整个IT基础设施需要进行整体优化设计,应充分考量后台数据中心的高节能性、高稳定性、高安全性、高可扩展性、高度冗余,基础设施建设这五个方面,同时更需要解决大规模节点数的数据中心的部署、高速内部网络的构建、机房散热以及强大的数据备份等问题。 大数据离不开效益型数据中心的构建 深入了解大数据应用的数据中心经济学对于提高企业的实际利润率,具有十分重要的价值。数据中心经济学能够提供一个框架,帮助 IT 管理者认识存储的总体拥有成本(TCO)的长期价值影响。利用数据中心经济学确定存储决策、计算资源的准确支出,将能够帮助企业系统化地持续降低成本,并更好的支持企业采用大数据技术。 大数据更需要突破存储、性能瓶颈 大数据应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。此外,大数据应用还存在实时性的问题,特别是涉及到与网上交易或者金融类相关的应用。 大数据是一个朝阳产业,而且将推动数据中心基础设施及相关软件的爆发式增长,企业部署的数据中心环境也需做出相应的变革与创新。虽然,有很多“大数据”应 用环境需要较高的IOPS性能。为了迎接这些挑战,服务器、存储系统、服务、大数据技术软件以及整个产业都已经蓄势待发,未来也必将蓬勃发展。 责编:孔维维 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|