大数据在今天吸引了大量关注,个人、企业和政府机构之间的互动创造了数据的海洋,通过有效识别、访问、筛选和分析其中部分数据能带来新的见解和益处。大数据需要大量的储存空间,先进的存储基础设施必不可少,需要能在多台服务器上伸缩自如的存储解决方案。有许多优秀的开源文件系统能用于深入分析大数据,其中包括:
QFS
Quant_cast File System (QFS) 是一个高性能、容错、分布式的文件系统,其开发是用于支持 MapReduce 处理或者需要顺序读写大文件的应用。
HDFS
Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。HDFS有着高容错性(fault-tolerent)的特点,并且设计用来部署在低廉的(low- cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。HDFS开始是为开源的apache项目nutch的基础结构而创建,HDFS是hadoop项目的一部分,而 hadoop又是lucene的一部分。
Ceph
Ceph是加州大学Santa Cruz分校的Sage Weil(DreamHost的联合创始人)专为博士论文设计的新一代自由软件分布式文件系统。自2007年毕业之后,Sage开始全职投入到Ceph开 发之中,使其能适用于生产环境。Ceph的主要目标是设计成基于POSIX的没有单点故障的分布式文件系统,使数据能容错和无缝的复制。2010年3 月,Linus Torvalds将Ceph client合并到内 核2.6.34中。IBM开发者园地的一篇文章探讨了Ceph的架构,它的容错实现和简化海量数据管理的功能。
Lustre
Lustre是一个大规模的、安全可靠的,具备高可用性的集群文件系统,它是由SUN公司开发和维护的。
该项目主要的目的就是开发下一代的集群文件系统,可以支持超过10000个节点,数以PB的数据量存储系统。
责编:李红燕
微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友