|
华为助北大实验室大数据科研走在最前沿大数据将在智慧城市中担当重任,也使得当前大数据的研究更加紧迫和关键。 2013年即将画上句号,这一年IT界关注的焦点之一即“智慧城市”,媒体甚至将2013年称为智慧城市发展元年。随着智慧城市大帷幕的开启,大数据也作为其中一个主角走上了舞台,并伴随着大数据搜集和分析技术的发展,未来的交通、零售、医疗、安全、教育等领域都将发生重大变化。大数据将在智慧城市中担当重任,也使得当前大数据的研究更加紧迫和关键。 大数据研究前沿 北大重点实验室担重任 如今越来越多的领域都需要使用大数据分析和挖掘技术,大数据的获取、挖掘和分析不只是生产工具,而且它已经成为科学进程的组成部分,未来不论在自然科学还是社会科学方面,很多研究都将由大数据驱动。大数据研究这一具有挑战性的课题,目前由国内最顶尖的高等学府北京大学重点研究实验室承担,也就是北京大学机器感知与智能教育部重点实验室(以下简称北大重点实验室)。 北大重点实验室是一个横跨多个研究领域的实验室,目前涉及的主要领域包括计算机科学、智能科学技术、心理学以及认知科学等,是一个多学科交叉科研机构。实验室以实现高度智能化的机器感知系统为目标,并紧密结合国民经济和社会发展的要求,开展机器感知、智能信息处理与认知科学方面的基础与应用基础研究。目前实验室的主要研究方向有感知机理,计算智能与知识发现,视感知,听感知,数字媒体技术,可视化与视觉计算。 北大重点实验室承担着多学科的重点研究,并一直走在科技的前沿,这次北大重点实验室承接了大数据研究这一项目后,将工作重点不仅放在了研发用于处理海量数据的新技术和系统上面,还放在了确保个人资料的收集、处理和分析在一个严密、安全的环境下进行上面。同时,北大重点实验室还承担着如何利用大数据解决交通运输、城市规划、卫生、财政和教育等现实中不同领域的问题,以及如何通过大数据建立分析模型,来预测传染病的传播并进行舆情分析等研究方向。 大数据研究面临的挑战及北大重点实验室IT选型重点 目前,参与大数据研究的各方面临着一些技术上的挑战,其中包括: 1. 非结构化和半结构化数据的高效处理 据统计,目前采集到的数据85%以上是非结构化和半结构化数据,而传统的关系数据库技术无法胜任这些数据的处理,因为关系数据库系统的出发点是追求高度的数据一致性和容错性。 2. 如何探索大数据复杂性、不确定性特征描述的刻画方法及大数据的系统建模 这一问题的突破是实现大数据知识发现的前提和关键。从长远角度来看,依照大数据的个体复杂性和随机性所带来的挑战将促使大数据数学结构的形成,从而导致大数据统一理论的完备。从短期而言,学术界鼓励发展一种一般性的结构化数据和半结构化、非结构化数据之间的转化原则,以支持大数据的交叉工业应用。管理科学,尤其是基于最优化的理论将在发展大数据知识发现的一般性方法和规律性中发挥重要的作用。 责编:王雅京 微信扫一扫实时了解行业动态 微信扫一扫分享本文给好友 著作权声明:畅享网文章著作权分属畅享网、网友和合作伙伴,部分非原创文章作者信息可能有所缺失,如需补充或修改请与我们联系,工作人员会在1个工作日内配合处理。 |
最新专题 |
|